内页banner
Search
Home

Search

  • Why is lamination used in the core of a transformer? Why is lamination used in the core of a transformer?
    Oct 17, 2024
    Transformers are electrical devices that transfer electrical energy between two or more circuits through electromagnetic induction. Transformers consist of two main components: a primary winding and a secondary winding, both wound around a core. The transformer core of a transformer plays a crucial role in its efficient operation. It is typically made using laminations or stacked layers of a magnetic material, such as silicon steel. But why is lamination used in the core of a transformer? Let's delve deeper into this question. The primary reason for using laminations in the transformer core is to minimize energy losses. When an alternating current (AC) flows through a transformer, the magnetic field generated by the current causes the core to undergo rapid magnetization and demagnetization cycles. These cycles lead to two types of energy losses in the transformer core: hysteresis loss and eddy current loss. Hysteresis loss occurs due to the repeated flipping of magnetic domains within the core material, resulting in energy dissipation in the form of heat. Laminating the core helps to reduce this loss by segmenting the core into thin layers. These layers disrupt the continuous path for magnetic flux, reducing the area enclosed by the hysteresis loop and thus minimizing hysteresis loss. Eddy current loss, on the other hand, is caused by the circulating currents induced within the core material due to the varying magnetic field. By using laminations, the transformer core is effectively divided into isolated pieces, reducing the continuous loops that the eddy currents can flow through. This segmentation significantly decreases the cross-sectional area available for eddy currents and, consequently, reduces eddy current losses. Moreover, laminations also enhance the mechanical strength and stability of the transformer core. By stacking and tightly clamping the laminations together, the core becomes more rigid and less susceptible to mechanical stresses and vibrations. This ensures that the core maintains its integrity and optimal magnetic properties throughout the transformer's operation. In summary, the use of laminations in the core of a transformer is essential for minimizing energy losses, particularly hysteresis and eddy current losses. By dividing the core into thin layers, laminations reduce the path for magnetic flux and circulating currents, resulting in improved efficiency and overall performance of the transformer. Additionally, laminations enhance the mechanical stability of the core. These factors collectively contribute to the reliable and efficient operation of transformers in applications.
    Read More
  • How does a transformer achieve voltage transformation? How does a transformer achieve voltage transformation?
    Jan 15, 2024
    Transformers achieve voltage transformation through electromagnetic induction. When an alternating current (AC) flows through the primary winding of the transformer, it generates a changing magnetic field. This changing magnetic field induces a voltage in the secondary winding based on the turns ratio between the primary and secondary windings. As a result, the voltage is stepped up or stepped down without altering the frequency, allowing efficient transmission of electrical energy across different voltage levels. A transformer operates based on the principle of electromagnetic induction. It consists of two insulated windings wound around a closed iron core. These windings, known as the primary winding or the first winding, and the secondary winding or the second winding, have different numbers of turns and are only magnetically coupled without electrical connection. When the primary winding is connected to an AC power source, an alternating current flows through it, creating an alternating magnetic flux in the iron core. This flux induces voltages, denoted as e1 and e2, respectively, in the primary and secondary windings at the same frequency. When a load is connected to the secondary winding, the voltage e2 causes the current to flow through the load, enabling the transfer of electrical energy. This accomplishes the voltage transformation. According to Equation, the magnitude of the induced voltage in the primary and secondary windings is proportional to their respective numbers of turns. Since the induced voltage is approximately equal to the actual voltage of the windings, by having different numbers of turns in the primary and secondary windings, the voltage conversion in a transformer can be achieved.
    Read More
  • What is a core in the transformer? What is a core in the transformer?
    Jan 22, 2024
      The core of the transformer is the magnetic circuit part of the transformer.  It is usually made of hot-rolled or cold-rolled silicon steel sheets with a high silicon content and coated with insulating paint on the surface. The iron core and the coils wound around it form a complete electromagnetic induction system. The amount of power transmitted by the power transformer depends on the material and cross-sectional area of the core.   The iron core is one of the most basic components of the transformer. It is the magnetic circuit part of the transformer. The primary and secondary windings of the transformer are on the iron core. In order to improve the permeability of the magnetic circuit and reduce the eddy current loss in the iron core, the iron core is usually Made of 0.35mm, surface insulated silicon steel sheet. The iron core is divided into two parts: an iron core post and an iron yoke. The iron core post is covered with windings, and the iron yoke connects the iron core to form a closed magnetic circuit. In order to prevent the metal components such as the transformer core, clamps, and pressure rings from inductive floating potential being too high and causing discharge during operation, these components need to be grounded at a single point. In order to facilitate testing and fault finding, large transformers generally have the core and clamps lead out to the ground through two bushings respectively.
    Read More

Need Help? leave a message

leave a message

We will contact you as soon as possible

Submit

home

products

whatsApp

contact

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on