内页banner
Search
Home

Search

  • What is the core of a transformer made of?
    Aug 01, 2025
    The transformer core (also known as the magnetic core) is the central magnetic circuit component of a transformer. Its material selection directly affects the transformer's efficiency, losses, and applicable scenarios. Based on operating frequency, power requirements, and cost factors, core materials can be categorized into the following types:   1. Traditional Silicon Steel Sheets (Fe-Si Alloy):​​ Composition: Cold-rolled steel sheets with silicon content ranging from 0.8% to 4.8% , typically with a thickness of  0.35mm or thinner​. Characteristics: High saturation magnetic induction (Bs≈1.6–1.7T), suitable for high-power scenarios at power frequencies (50/60 Hz). Laminated stacking: Insulating coatings are applied between layers to reduce eddy current losses. However, losses increase significantly at high frequencies​. Applications: Primarily used in power transformers and motor cores for low-frequency, high-power electrical equipment.   2. Ferrite Core​ Composition: Manganese-zinc (MnZn) or nickel-zinc (NiZn) ferrite, classified as sintered magnetic metal oxides. Characteristics: High resistivity: Significantly reduces eddy current losses at high frequencies, suitable for a ​frequency range of 1 kHz——1 MHz​ . Low saturation flux density (Bs ≈<0.5T), weak DC bias capability, and prone to magnetic saturation. Applications: Widely used in electronic devices such as switch-mode power supplies (SMPS)​, ​high-frequency transformers, and inductors.   3. Metal Magnetic Powder Cores Types: Iron powder cores Iron-silicon-aluminum powder cores (FeSiAl) High-flux powder cores (HighFlux) Molybdenum permalloy powder cores (MPP) . Characteristics: Strong anti-saturation capability: Reduces eddy currents through insulation-coated dispersed magnetic particles, making it suitable for DC superposition scenarios . Medium permeability (μe≈10—125) with a frequency range of 10 kHz - 100 kHz​ . Applications: Widely used in medium-to-high-frequency power devices such as: ​PFC inductors (Power Factor Correction) ​Filter inductors.   4. Novel Alloy Materials​ Amorphous Alloys​ Composition: Iron-based (e.g., Fe₈₀B₁₀Si₁₀) or cobalt-based amorphous ribbons, characterized by disordered atomic arrangement​ . ​Advantages: ​Ultra-low core losses (only 1/5 of silicon steel), enabling significant energy savings . Limitation: Significant magnetostriction (resulting in higher operating noise) . ​Applications: Energy-efficient distribution transformers.   Nanocrystalline Alloys​ ​Structure: ​Nano-scale crystalline grains (<50 nm) embedded in an amorphous matrix . ​Advantages: ​High permeability & low losses (superior to ferrites at 50 kHz) . ​Strong harmonic resistance and excellent thermal stability (operating range: -40–120°C) . ​Applications: ​High-frequency transformers and PV inverters​ . ​EV electric drive systems (e.g., integrated OBC/DC-DC modules)   Key Factors in Material Selection​ ​Operating Frequency​ ​Low Frequency (≤1 kHz) : ​Silicon Steel or Amorphous Alloys (e.g., Fe₈₀B₁₀Si₁₀). High Frequency (>10 kHz) : ​Ferrite Cores (MnZn/NiZn) or Nanocrystalline Alloys.   Loss Requirements​ ​Lowest Core Loss: ​Amorphous/Nanocrystalline Alloys. High-Frequency Loss Optimization: ​Ferrites.   Cost and Process ​Cost-Effectiveness & Maturity: ​Silicon Steel. High Initial Cost with Long-Term ROI: ​Amorphous/Nanocrystalline Alloys.​  
    Read More
  • What is a transformer core?
    Jul 19, 2025
    The transformer core is the core component of a power transformer. As the carrier of the magnetic circuit for electromagnetic induction, it directly affects the efficiency, volume and operational stability of the transformer. ​ In terms of materials, modern transformer cores are mostly made by laminating silicon steel sheets (with a silicon content of approximately 3% to 5%). The addition of silicon can significantly increase the resistivity of iron and reduce eddy current losses - this is the useless power consumption caused by electromagnetic induction of current in the iron core. Silicon steel sheets are usually rolled into thin sheets of 0.3mm or 0.23mm. After being coated with an insulating layer on the surface, they are stacked layer by layer to further reduce the influence of eddy currents. ​ Its structure is divided into two types: core-type and shell-type. In the core-type, the windings of the core wrap around the core column and are mostly used in power transformers. Shell-type cores are wound around and are commonly found in small transformers. The geometric design of the core needs to be precisely calculated to ensure the unobstructed magnetic circuit and avoid magnetic saturation at the same time. ​ Efficient core design is the key to energy conservation in transformers. Nowadays, the application of new materials such as ultrafine crystalline alloys is driving cores towards lower losses and higher magnetic permeability, providing core support for the construction of green power grids.
    Read More
  • The Role of Laminated Iron Cores: Enhancing Electrical Machinery Efficiency The Role of Laminated Iron Cores: Enhancing Electrical Machinery Efficiency
    Jun 03, 2025
    Laminated iron cores play a crucial role in various electrical devices, significantly influencing equipment performance and efficiency. Constructed by stacking thin silicon steel or iron alloy sheets with insulation between layers, this unique structural design equips laminated iron cores with multiple functions, making them indispensable in transformers, motors, inductors, and other devices. Reducing Eddy Current Losses Significantly Based on the principle of electromagnetic induction, when an iron core is exposed to an alternating magnetic field, it generates an induced electromotive force, forming closed loops inside the core, resulting in eddy currents. Eddy currents cause the core to heat up, leading to energy loss and reduced device efficiency. By dividing the iron core into numerous thin sheets, laminated iron cores increase the resistance path for eddy currents. Due to the extreme thinness of each sheet, the eddy current flow is greatly reduced under the same induced electromotive force. For instance, in transformers, using laminated iron cores effectively reduces eddy current losses, enhancing electric energy transmission efficiency. Studies indicate that compared to solid iron cores, laminated iron cores can decrease transformer eddy current losses by orders of magnitude, significantly improving energy conservation during power transmission.   Optimizing Magnetic Performance Effectively Materials like silicon steel inherently possess high magnetic permeability; however, in an alternating magnetic field, hysteresis can lead to energy loss. The laminated structure smoothens the flipping of magnetic domains in the core during magnetic field changes, reducing hysteresis losses. Additionally, the insulation layers between each sheet prevent lateral diffusion of magnetic flux, concentrating flux flow along the core's axial direction, enhancing magnetic permeability of the magnetic circuit, and strengthening electromagnetic induction effects. In motors, superior magnetic performance allows the motor to generate a more stable and stronger magnetic field during operation, increasing the motor's output torque and operational efficiency, ensuring the motor runs efficiently and reliably.   Enhancing Heat Dissipation Capability The gaps between laminated sheets form natural heat dissipation channels. When equipment generates heat during operation, this heat dissipates more effectively through these gaps, helping lower the core's temperature, preventing performance degradation or damage due to overheating. For instance, in large generators, the excellent heat dissipation performance of laminated iron cores ensures that the generator maintains a stable operating temperature during extended high-load operations, enhancing the generator's reliability and lifespan.   Laminated iron cores, by reducing eddy current losses, optimizing magnetic performance, and enhancing heat dissipation capabilities, play an irreplaceable role in various electrical devices such as transformers, motors, and inductors. Their significance lies in improving equipment efficiency, performance, stability, as well as in achieving energy-saving and emission reduction goals. With ongoing technological advancements, the materials and manufacturing processes of laminated iron cores continue to evolve, promising to unleash even greater value across diverse fields in the future.
    Read More
  • Understanding Different Grades of Oriented Silicon Steel for Transformer Cores Understanding Different Grades of Oriented Silicon Steel for Transformer Cores
    Jan 15, 2025
    Oriented silicon steel, also known as electrical or CRGO (Cold-Rolled Grain-Oriented) silicon steel, is a vital material used in the manufacturing of transformer cores. Its unique magnetic properties and grain orientation make it an excellent for efficient power transmission. In this article, we will explore the various grades of oriented silicon steel and their applications in the transformer industry, including the addition of the M4 grade. We are proud to inform you that SHUNGE possesses a wide range of oriented silicon steel grades; please contact us for any specific requirements. 1. M0 Grade: M0 grade oriented silicon steel is highly regarded for its exceptional magnetic characteristics. With its low core losses and high magnetic permeability, it is ideal for use in high-efficiency power transformers. The superior energy efficiency and improved voltage regulation provided by M0 grade contribute to enhanced performance in diverse applications, ranging from industrial power distribution to renewable energy systems. 2. M1 Grade: M1 grade oriented silicon steel exhibits excellent magnetic properties and finds common usage in medium to high-power transformers. It offers slightly higher core losses compared to the M0 grade but remains a highly reliable and efficient option. Transformers utilizing M1 grade silicon steel serve various electrical systems, including utility substations, commercial buildings, and manufacturing facilities. 3. M2 Grade: M2 grade oriented silicon steel is specifically designed for applications requiring lower magnetic flux density. Although it has higher core losses compared to M0 and M1 grades, it remains suitable for transformers where efficiency is not the primary concern. M2 grade silicon steel is commonly used in low-power transformers, such as those found in household appliances and lighting systems. 4. M4 Grade: The M4 grade oriented silicon steel is a specialized grade that offers distinct magnetic properties and is suitable for specific transformer applications. While providing unique benefits, such as lower core losses at higher frequencies, it caters to transformers operating in demanding environments. M4 grade silicon steel is widely used in power electronics, renewable energy systems, and high-frequency transformers. Oriented silicon steel, with its grain orientation and superior magnetic properties, plays a crucial role in ensuring the efficiency and reliability of transformer cores. By understanding the different grades available, manufacturers can select the most suitable material for their specific power transmission needs. Whether it is the widely used M0 and M1 grades, the specialized M2 grade, or the advanced M4 grade, each offers unique benefits and applications, contributing to the seamless functioning of electrical systems worldwide. At ShunGe, we are proud to offer a wide range of oriented silicon steel grades, including nearly all available grades. Please feel free to contact us for any specific requirements or inquiries.
    Read More
  • CRGO Silicon Steel for Efficient Power Transmission CRGO Silicon Steel for Efficient Power Transmission
    Dec 18, 2024
    Transformer core plays a crucial role in the efficient and reliable transmission of electrical power. As a key component, it provides a low reluctance path for the magnetic flux generated by the primary winding to be transferred to the secondary winding. Among various materials used for transformer cores, oriented silicon steel, also known as CRGO (Cold-Rolled Grain-Oriented) silicon steel or electrical steel, stands out for its exceptional magnetic properties and widespread application in different power ratings of transformers. CRGO Silicon Steel: A Superior Core Material: CRGO silicon steel is specifically engineered to exhibit grain orientation, enabling it to maximize its magnetic properties when subjected to an alternating magnetic field. The manufacturing process involves a controlled cold rolling technique that aligns the crystal grains within the steel in a specific direction. This grain orientation reduces the occurrence of magnetic domains and minimizes hysteresis losses and eddy current losses, making CRGO silicon steel the preferred choice for transformer cores. Applications in Different Power Ratings: Low-Power Transformers:In low-power transformers, such as those used in residential and small-scale commercial applications, CRGO silicon steel is utilized to enhance energy efficiency. The material's low core losses and high magnetic permeability contribute to reduced power wastage and improved voltage regulation, ensuring optimum performance in household appliances, lighting systems, and electronic devices. Medium-Power Transformers:Medium-power transformers, commonly employed in industrial settings and power distribution networks, require reliable and efficient core materials. CRGO silicon steel offers excellent magnetic properties at intermediate power ratings, enabling enhanced energy transmission and minimal power losses. These transformers find application in areas such as manufacturing facilities, commercial buildings, and utility substations. High-Power Transformers:For high-power transformers, such as those used in large-scale power generation and transmission systems, CRGO silicon steel provides superior performance. With its advanced grain orientation and optimized magnetic characteristics, it minimizes core losses and enhances efficiency, ensuring reliable power transmission over long distances. These high-power transformers are crucial components of electrical grids, enabling the efficient distribution of electricity to cities, industries, and infrastructure projects.     The selection of the core material plays a vital role in the performance and efficiency of transformers. CRGO silicon steel, also known as oriented silicon steel or electrical steel, stands out as an ideal choice for transformer cores across different power ratings. Its unique grain orientation and magnetic properties significantly reduce energy losses, ensuring optimal power transmission. Whether in low-power, medium-power, or high-power transformers, CRGO silicon steel demonstrates its superiority in enhancing efficiency and reliability in the transmission and distribution of electrical energy.
    Read More
  • Unveiling the Magnetic Marvel: The Fascinating World of Orientation Silicon Steel Unveiling the Magnetic Marvel: The Fascinating World of Orientation Silicon Steel
    Nov 05, 2024
    In the realm of materials science, there exists a star that shines brightly in the field of electrical engineering – orientation silicon steel, or simply, oriented silicon steel. This isn't just any ordinary metal; it's a technological wonder that revolutionizes the way we think about electricity and magnetism. Imagine a material so refined and engineered that it exhibits exceptional magnetic properties, making it the go-to choice for transformers and other electrical devices. Oriented electrical steel undergoes a complex manufacturing process involving rolling and annealing to align its magnetic domains in a specific direction. This alignment is crucial, as it significantly reduces energy loss during the transformation of electrical energy, enhancing efficiency by leaps and bounds. But why should we care? Well, in today's world where sustainability and energy efficiency are paramount, every little bit of energy saved counts. Transformers equipped with orientation silicon steel play a pivotal role in reducing electricity wastage, thereby contributing to greener, more eco-friendly power grids. Moreover, the material's thin gauge and high permeability allow for more compact transformer designs, making it an invaluable asset in the ever-shrinking world of electronics. From large-scale power stations to the tiny transformers inside our gadgets, orientation silicon steel is there, silently working its magic. So, the next time you marvel at the seamless flow of electricity that powers your life, remember the unsung hero behind the scenes – orientation silicon steel. It's a material that's not just about steel; it's about innovation, efficiency, and a brighter, more sustainable future.
    Read More
  • Why is lamination used in the core of a transformer? Why is lamination used in the core of a transformer?
    Oct 17, 2024
    Transformers are electrical devices that transfer electrical energy between two or more circuits through electromagnetic induction. Transformers consist of two main components: a primary winding and a secondary winding, both wound around a core. The transformer core of a transformer plays a crucial role in its efficient operation. It is typically made using laminations or stacked layers of a magnetic material, such as silicon steel. But why is lamination used in the core of a transformer? Let's delve deeper into this question. The primary reason for using laminations in the transformer core is to minimize energy losses. When an alternating current (AC) flows through a transformer, the magnetic field generated by the current causes the core to undergo rapid magnetization and demagnetization cycles. These cycles lead to two types of energy losses in the transformer core: hysteresis loss and eddy current loss. Hysteresis loss occurs due to the repeated flipping of magnetic domains within the core material, resulting in energy dissipation in the form of heat. Laminating the core helps to reduce this loss by segmenting the core into thin layers. These layers disrupt the continuous path for magnetic flux, reducing the area enclosed by the hysteresis loop and thus minimizing hysteresis loss. Eddy current loss, on the other hand, is caused by the circulating currents induced within the core material due to the varying magnetic field. By using laminations, the transformer core is effectively divided into isolated pieces, reducing the continuous loops that the eddy currents can flow through. This segmentation significantly decreases the cross-sectional area available for eddy currents and, consequently, reduces eddy current losses. Moreover, laminations also enhance the mechanical strength and stability of the transformer core. By stacking and tightly clamping the laminations together, the core becomes more rigid and less susceptible to mechanical stresses and vibrations. This ensures that the core maintains its integrity and optimal magnetic properties throughout the transformer's operation. In summary, the use of laminations in the core of a transformer is essential for minimizing energy losses, particularly hysteresis and eddy current losses. By dividing the core into thin layers, laminations reduce the path for magnetic flux and circulating currents, resulting in improved efficiency and overall performance of the transformer. Additionally, laminations enhance the mechanical stability of the core. These factors collectively contribute to the reliable and efficient operation of transformers in applications.
    Read More
  • The Significance of Lamination in Transformer Cores The Significance of Lamination in Transformer Cores
    Oct 12, 2024
    Transformers are essential electrical devices that facilitate the efficient transmission and distribution of electrical energy. At the heart of every transformer lies its core, which plays a crucial role in transforming voltage levels. One commonly employed technique in constructing transformer cores is lamination. In this article, we will explore why lamination is used and delve into its significance in the design and performance of transformer cores.  Why COGO Lamination? The primary reason for incorporating CRGO laminations in transformer cores is to mitigate energy losses caused by magnetic characteristics while maintaining optimal performance. Laminated cores consist of numerous thin layers of a magnetic material, typically silicon steel, stacked together and insulated from each other. This technique introduces several benefits that enhance the efficiency and reliability of transformers.   Reducing Eddy Current Losses: When an alternating current flows through the primary winding of a transformer, it induces a magnetic field in the core. However, this varying magnetic field can induce small circulating currents, known as eddy currents, within the solid core material. These eddy currents generate heat and consume a significant amount of energy, leading to undesirable energy losses. Lamination effectively addresses this issue by breaking up the solid core into thin insulated layers, thus interrupting the flow of eddy currents and minimizing energy dissipation as a result.     Controlling Magnetic Flux: Lamination also helps in controlling the flow of magnetic flux within the transformer core. By dividing the core into multiple layers, each with its own magnetic path, laminations ensure that the magnetic flux follows a desired and efficient route. This controlled flux path minimizes magnetic leakage and maximizes the coupling between the primary and secondary windings, leading to improved transformer performance.   Reducing Hysteresis Losses: Hysteresis loss occurs when the magnetic field within the core material repeatedly reverses its polarity with each alternating cycle. By using laminations, the size of the hysteresis loop, and thus the associated hysteresis losses, can be significantly reduced. This is achieved by carefully selecting the thickness and composition of the laminations, optimizing the magnetic properties and reducing energy losses within the core. SO… Lamination is a fundamental technique employed in transformer core design to enhance efficiency and reduce energy losses. By effectively controlling eddy currents, magnetic flux, and hysteresis losses, laminated transformer cores ensure optimal performance and improve the overall energy efficiency of electrical power distribution systems. As technologies continue to advance, the use of advanced laminated materials and designs will further contribute to the evolution of efficient and sustainable transformers.
    Read More
  • Transformer Cores: Enhancing Efficiency and Performance with Silicon Steel Transformer Cores: Enhancing Efficiency and Performance with Silicon Steel
    Jun 06, 2024
    Transformer cores play a crucial role in the efficient operation of transformers. These cores are typically made of a material called silicon steel, which possesses excellent magnetic properties. In this article, we will explore the significance of transformer cores, highlight different types of cores, and discuss their application scenarios. 1. Importance of Transformer Cores: Transformer cores serve as the magnetic circuit that facilitates energy transfer between the primary and secondary windings of a transformer. Their primary function is to provide a low-reluctance path for the magnetic flux generated by the alternating current, resulting in efficient energy conversion. By utilizing high-quality silicon steel, transformer cores minimize energy losses and enhance overall performance. 2. Silicon Steel and its Benefits: Silicon steel, also known as electrical steel or laminated steel, is the preferred material for transformer cores due to its magnetic properties. It contains silicon in specific compositions to reduce magnetic losses caused by eddy currents and hysteresis. Silicon steel offers low core losses, high permeability, and excellent saturation induction, making it an ideal choice for transformer cores. 3. Types of Transformer Cores: E-Core: The E-shaped core is one of the most commonly used transformer cores. It offers high winding space utilization and allows the primary and secondary windings to share a common structure. The E-core design provides efficient flux distribution and minimizes stray magnetic fields, resulting in improved performance and reduced losses. C-Core: The C-core is another popular design for transformer cores. It is fabricated by winding silicon steel strips into a closed core shape. C-cores offer a compact and lightweight structure, ensuring high energy efficiency. With carefully designed air gaps and optimal winding configurations, C-cores exhibit low losses and excellent magnetic performance. 4. Application Scenarios: Power Distribution Transformers: Both E-core and C-core transformer designs find extensive applications in power distribution systems. E-cores are commonly employed in high-power transformers where efficiency and compact size are essential considerations. C-cores, on the other hand, are suitable for smaller transformers used in residential or commercial applications. Audio Transformers: E-cores are often utilized in audio transformers where quality and fidelity are critical. These transformers ensure effective signal transmission and minimize distortion. The superior magnetic properties of silicon steel cores contribute to improved audio performance, offering clean and accurate sound reproduction. Renewable Energy Systems: Transformers used in renewable energy systems, such as solar and wind power, require efficient energy conversion. Both E-cores and C-cores can be employed depending on the specific requirements of the system. These cores enable effective power transmission, reducing energy losses and maximizing the utilization of renewable resources. Transformer cores, made of silicon steel, are vital components that optimize the efficiency and performance of transformers. Whether in power distribution, audio applications, or renewable energy systems, the choice of E-cores or C-cores depends on the specific design considerations. By leveraging the high magnetic permeability and low core losses of silicon steel cores, transformers can deliver optimal functionality in various operational scenarios.
    Read More
  • Transformative Core Materials: CRGO & CRNGO for Optimal Performance in Transformers Transformative Core Materials: CRGO & CRNGO for Optimal Performance in Transformers
    May 27, 2024
    Transformers play a vital role in electrical power systems, enabling efficient transmission and distribution of electricity. At the heart of every transformer lies the core, a crucial component that ensures the smooth conversion of electrical energy between different voltage levels. This article will explore two commonly used core materials in transformers, CRGO (Cold-Rolled Grain Oriented) and CRNGO (Cold-Rolled Non-Grain Oriented), highlighting their characteristics, advantages, and application scenarios. CRGO Transformer Cores CRGO cores are widely employed in power transformers, where high efficiency and low core losses are crucial. The production process involves cold-rolling a silicon steel strip to align the grains in the crystal lattice structure, resulting in excellent magnetic properties. CRGO cores exhibit the following key features: Reduced Core Losses: The grain-oriented structure of CRGO cores minimizes magnetic hysteresis and eddy current losses, leading to superior energy efficiency and reduced heat generation. High Magnetic Permeability: CRGO cores exhibit high magnetic permeability, enabling efficient magnetization and demagnetization cycles during power conversion processes, thus enhancing overall transformer performance. Low Magnetostriction: Magnetostriction is the phenomenon where a material changes shape under the influence of a magnetic field. CRGO cores have low magnetostriction, reducing mechanical stress on the transformer and minimizing audible noise. Application Scenarios: CRGO cores are commonly used in large power transformers, distribution transformers, and high-power applications due to their excellent energy conversion efficiency and performance stability over a wide range of operating conditions. CRNGO Transformer Cores CRNGO cores are predominantly employed in low and medium-power transformers, along with various electrical machines, such as motors and generators. Unlike CRGO cores, CRNGO cores do not possess grain-oriented crystal structures. Their key characteristics include: Enhanced Permeability: Although lower than CRGO cores, CRNGO cores still exhibit reasonable magnetic permeability, making them suitable for applications requiring moderate power conversion efficiency. Lower Production Costs: The absence of grain orientation in CRNGO cores simplifies the manufacturing process, resulting in reduced production costs compared to CRGO cores. Wide Variety of Shapes: CRNGO cores can be easily tailored into different shapes and sizes, allowing for design flexibility and customization to meet specific application requirements. Application Scenarios: CRNGO cores find extensive use in lower-power transformers, small power supplies, electric vehicles, and other applications demanding cost-effectiveness and optimal performance within a limited operating range. Selecting the appropriate transformer core material is critical to achieving optimal performance and efficiency in various electrical applications. CRGO cores excel in high-power transformers, where minimal losses and excellent energy conversion are paramount. On the other hand, CRNGO cores find applications in low-to-medium-power transformers, motors, and generators, offering a balance between performance and cost-effectiveness. Understanding the characteristics of these transformative core materials is essential for designing reliable and efficient electrical systems. As a leading transformer manufacturer, our company specializes in producing high-quality transformer cores tailored to meet the diverse needs of our customers. Whether you require CRGO or CRNGO cores, we are committed to delivering exceptional products that optimize performance and contribute to the advancement of electrical power systems. We welcome you to contact us for any transformer core requirements or further inquiries.  
    Read More
  • TEN differences between dry-type transformers and oil-immersed transformers TEN differences between dry-type transformers and oil-immersed transformers
    Mar 27, 2024
    Recently, we received some inquiries from customers about dry-type transformers and oil-immersed transformers. As you may know, dry-type transformers are generally more expensive compared to oil-immersed transformers. But why? What’s the difference between them? Let Catherine explain it to you today! Installation Location Dry-type transformers are preferred for indoor locations such as basements, floors, and rooftops, especially in areas with high human population density oil-immersed transformers are typically used in substations. Application Box-type transformers are generally used for indoor applications, while oil-immersed transformers are commonly used for outdoor temporary power supply. Space Considerations The choice between dry-type and oil-immersed transformers depends on the available space. oil-immersed transformers are suitable for larger spaces, while dry-type transformers are preferred in compact spaces. Climate: oil-immersed transformers are more suitable for humid and hot environments. If dry-type transformers are used in such conditions, they must be equipped with forced air-cooling systems. Appearance Dry-type transformers have visible cores and coils, while oil-immersed transformers are enclosed and only the outer shell is visible. Connection Dry-type transformers mostly use silicone rubber bushings, while oil-immersed transformers often use porcelain bushings. Capacity and Voltage Dry-type transformers are mainly used for distribution purposes, with capacities up to 1600 KVA and voltages below 10 KV. oil-immersed transformers can handle all capacities and voltage levels, including high voltage such as 1000 KV. Insulation and Cooling Dry-type transformers use resin insulation and rely on natural or forced-air cooling, while oil-immersed transformers use insulating oil for insulation and heat dissipation through radiators or cooling fins. Suitable Locations Dry-type transformers are commonly used in fireproof and explosion-proof environments, often in large and high-rise buildings. On the other hand, oil-immersed transformers are typically installed outdoors with provisions for an "incident oil pit" in case of leaks or spills. Load-Bearing Capacity Dry-type transformers should operate within their rated capacity, while oil-immersed transformers have better overload capacity. Cost Dry-type transformers are generally more costly compared to oil-immersed transformers of the same capacity. If you want to know more about transformer cores, especially hope to purchase some good transformer cores in China. Contact SHUNGE! We will be very glad to help!  
    Read More
  • What is the difference between adding or not adding an iron core to the transformer? What is the difference between adding or not adding an iron core to the transformer?
    Mar 14, 2024
    Transformer is a device that converts AC voltage, current and impedance. When AC current flows through the primary coil, AC magnetic flux is generated in the iron core (or magnetic core), causing voltage (or current) to be induced in the secondary coil. A transformer consists of an iron core (or magnetic core) and a coil. The transformer core is the main magnetic circuit of the coupled magnetic flux in the transformer. Working principle of transformer core The function of the core of the transformer is to form a magnetic circuit of coupling flux with very small reluctance. Because the reluctance is very small, the working efficiency of the transformer is greatly improved. Broadly speaking, transformers are divided according to the coupling material between coils, including air core transformers, magnetic core transformers, and iron core transformers. Air core transformers and magnetic core transformers are mostly used in high frequency electronic circuits. Because silicon steel itself is a material with strong magnetic permeability, it can produce greater magnetic induction intensity in the energized coil, which can reduce the size of the transformer and improve the working efficiency of the transformer. The characteristic of silicon steel is that it has the highest saturation magnetic induction intensity (above 2.0T) among commonly used soft magnetic materials. Therefore, when used as a transformer core, it can work at a very high operating point (such as an operating magnetic induction value of 1.5T). However, silicon steel also has the largest iron loss among commonly used soft magnetic materials. In order to prevent the iron core from heating due to excessive losses, its frequency of use is not high and it generally can only work below 20KHz. Therefore, the frequency of power circuits is mostly Around 50Hz. Our New-build transformer core Shunge Company not only provides first-hand silicon steel sheet raw materials, but also can customize finished transformer cores for customers. If you have any needs, please contact us.
    Read More
1 2
A total of2Pages

Need Help? leave a message

leave a message

We will contact you as soon as possible

Submit

home

products

whatsApp

contact

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on