Transformers achieve voltage transformation through electromagnetic induction. When an alternating current (AC) flows through the primary winding of the transformer, it generates a changing magnetic field. This changing magnetic field induces a voltage in the secondary winding based on the turns ratio between the primary and secondary windings. As a result, the voltage is stepped up or stepped down without altering the frequency, allowing efficient transmission of electrical energy across different voltage levels.
A transformer operates based on the principle of electromagnetic induction. It consists of two insulated windings wound around a closed iron core. These windings, known as the primary winding or the first winding, and the secondary winding or the second winding, have different numbers of turns and are only magnetically coupled without electrical connection.
When the primary winding is connected to an AC power source, an alternating current flows through it, creating an alternating magnetic flux in the iron core. This flux induces voltages, denoted as e1 and e2, respectively, in the primary and secondary windings at the same frequency.
When a load is connected to the secondary winding, the voltage e2 causes the current to flow through the load, enabling the transfer of electrical energy. This accomplishes the voltage transformation. According to Equation, the magnitude of the induced voltage in the primary and secondary windings is proportional to their respective numbers of turns. Since the induced voltage is approximately equal to the actual voltage of the windings, by having different numbers of turns in the primary and secondary windings, the voltage conversion in a transformer can be achieved.
We will contact you as soon as possible
Hi! Click one of our members below to chat on