内页banner
Search
Home

Search

  • Unveiling the Magnetic Marvel: The Fascinating World of Orientation Silicon Steel Unveiling the Magnetic Marvel: The Fascinating World of Orientation Silicon Steel
    Nov 05, 2024
    In the realm of materials science, there exists a star that shines brightly in the field of electrical engineering – orientation silicon steel, or simply, oriented silicon steel. This isn't just any ordinary metal; it's a technological wonder that revolutionizes the way we think about electricity and magnetism. Imagine a material so refined and engineered that it exhibits exceptional magnetic properties, making it the go-to choice for transformers and other electrical devices. Oriented electrical steel undergoes a complex manufacturing process involving rolling and annealing to align its magnetic domains in a specific direction. This alignment is crucial, as it significantly reduces energy loss during the transformation of electrical energy, enhancing efficiency by leaps and bounds. But why should we care? Well, in today's world where sustainability and energy efficiency are paramount, every little bit of energy saved counts. Transformers equipped with orientation silicon steel play a pivotal role in reducing electricity wastage, thereby contributing to greener, more eco-friendly power grids. Moreover, the material's thin gauge and high permeability allow for more compact transformer designs, making it an invaluable asset in the ever-shrinking world of electronics. From large-scale power stations to the tiny transformers inside our gadgets, orientation silicon steel is there, silently working its magic. So, the next time you marvel at the seamless flow of electricity that powers your life, remember the unsung hero behind the scenes – orientation silicon steel. It's a material that's not just about steel; it's about innovation, efficiency, and a brighter, more sustainable future.
    Read More
  • The Significance of Lamination in Transformer Cores The Significance of Lamination in Transformer Cores
    Oct 12, 2024
    Transformers are essential electrical devices that facilitate the efficient transmission and distribution of electrical energy. At the heart of every transformer lies its core, which plays a crucial role in transforming voltage levels. One commonly employed technique in constructing transformer cores is lamination. In this article, we will explore why lamination is used and delve into its significance in the design and performance of transformer cores.  Why COGO Lamination? The primary reason for incorporating CRGO laminations in transformer cores is to mitigate energy losses caused by magnetic characteristics while maintaining optimal performance. Laminated cores consist of numerous thin layers of a magnetic material, typically silicon steel, stacked together and insulated from each other. This technique introduces several benefits that enhance the efficiency and reliability of transformers.   Reducing Eddy Current Losses: When an alternating current flows through the primary winding of a transformer, it induces a magnetic field in the core. However, this varying magnetic field can induce small circulating currents, known as eddy currents, within the solid core material. These eddy currents generate heat and consume a significant amount of energy, leading to undesirable energy losses. Lamination effectively addresses this issue by breaking up the solid core into thin insulated layers, thus interrupting the flow of eddy currents and minimizing energy dissipation as a result.     Controlling Magnetic Flux: Lamination also helps in controlling the flow of magnetic flux within the transformer core. By dividing the core into multiple layers, each with its own magnetic path, laminations ensure that the magnetic flux follows a desired and efficient route. This controlled flux path minimizes magnetic leakage and maximizes the coupling between the primary and secondary windings, leading to improved transformer performance.   Reducing Hysteresis Losses: Hysteresis loss occurs when the magnetic field within the core material repeatedly reverses its polarity with each alternating cycle. By using laminations, the size of the hysteresis loop, and thus the associated hysteresis losses, can be significantly reduced. This is achieved by carefully selecting the thickness and composition of the laminations, optimizing the magnetic properties and reducing energy losses within the core. SO… Lamination is a fundamental technique employed in transformer core design to enhance efficiency and reduce energy losses. By effectively controlling eddy currents, magnetic flux, and hysteresis losses, laminated transformer cores ensure optimal performance and improve the overall energy efficiency of electrical power distribution systems. As technologies continue to advance, the use of advanced laminated materials and designs will further contribute to the evolution of efficient and sustainable transformers.
    Read More
  • Transformative Core Materials: CRGO & CRNGO for Optimal Performance in Transformers Transformative Core Materials: CRGO & CRNGO for Optimal Performance in Transformers
    May 27, 2024
    Transformers play a vital role in electrical power systems, enabling efficient transmission and distribution of electricity. At the heart of every transformer lies the core, a crucial component that ensures the smooth conversion of electrical energy between different voltage levels. This article will explore two commonly used core materials in transformers, CRGO (Cold-Rolled Grain Oriented) and CRNGO (Cold-Rolled Non-Grain Oriented), highlighting their characteristics, advantages, and application scenarios. CRGO Transformer Cores CRGO cores are widely employed in power transformers, where high efficiency and low core losses are crucial. The production process involves cold-rolling a silicon steel strip to align the grains in the crystal lattice structure, resulting in excellent magnetic properties. CRGO cores exhibit the following key features: Reduced Core Losses: The grain-oriented structure of CRGO cores minimizes magnetic hysteresis and eddy current losses, leading to superior energy efficiency and reduced heat generation. High Magnetic Permeability: CRGO cores exhibit high magnetic permeability, enabling efficient magnetization and demagnetization cycles during power conversion processes, thus enhancing overall transformer performance. Low Magnetostriction: Magnetostriction is the phenomenon where a material changes shape under the influence of a magnetic field. CRGO cores have low magnetostriction, reducing mechanical stress on the transformer and minimizing audible noise. Application Scenarios: CRGO cores are commonly used in large power transformers, distribution transformers, and high-power applications due to their excellent energy conversion efficiency and performance stability over a wide range of operating conditions. CRNGO Transformer Cores CRNGO cores are predominantly employed in low and medium-power transformers, along with various electrical machines, such as motors and generators. Unlike CRGO cores, CRNGO cores do not possess grain-oriented crystal structures. Their key characteristics include: Enhanced Permeability: Although lower than CRGO cores, CRNGO cores still exhibit reasonable magnetic permeability, making them suitable for applications requiring moderate power conversion efficiency. Lower Production Costs: The absence of grain orientation in CRNGO cores simplifies the manufacturing process, resulting in reduced production costs compared to CRGO cores. Wide Variety of Shapes: CRNGO cores can be easily tailored into different shapes and sizes, allowing for design flexibility and customization to meet specific application requirements. Application Scenarios: CRNGO cores find extensive use in lower-power transformers, small power supplies, electric vehicles, and other applications demanding cost-effectiveness and optimal performance within a limited operating range. Selecting the appropriate transformer core material is critical to achieving optimal performance and efficiency in various electrical applications. CRGO cores excel in high-power transformers, where minimal losses and excellent energy conversion are paramount. On the other hand, CRNGO cores find applications in low-to-medium-power transformers, motors, and generators, offering a balance between performance and cost-effectiveness. Understanding the characteristics of these transformative core materials is essential for designing reliable and efficient electrical systems. As a leading transformer manufacturer, our company specializes in producing high-quality transformer cores tailored to meet the diverse needs of our customers. Whether you require CRGO or CRNGO cores, we are committed to delivering exceptional products that optimize performance and contribute to the advancement of electrical power systems. We welcome you to contact us for any transformer core requirements or further inquiries.  
    Read More
  • What is the difference between adding or not adding an iron core to the transformer? What is the difference between adding or not adding an iron core to the transformer?
    Mar 14, 2024
    Transformer is a device that converts AC voltage, current and impedance. When AC current flows through the primary coil, AC magnetic flux is generated in the iron core (or magnetic core), causing voltage (or current) to be induced in the secondary coil. A transformer consists of an iron core (or magnetic core) and a coil. The transformer core is the main magnetic circuit of the coupled magnetic flux in the transformer. Working principle of transformer core The function of the core of the transformer is to form a magnetic circuit of coupling flux with very small reluctance. Because the reluctance is very small, the working efficiency of the transformer is greatly improved. Broadly speaking, transformers are divided according to the coupling material between coils, including air core transformers, magnetic core transformers, and iron core transformers. Air core transformers and magnetic core transformers are mostly used in high frequency electronic circuits. Because silicon steel itself is a material with strong magnetic permeability, it can produce greater magnetic induction intensity in the energized coil, which can reduce the size of the transformer and improve the working efficiency of the transformer. The characteristic of silicon steel is that it has the highest saturation magnetic induction intensity (above 2.0T) among commonly used soft magnetic materials. Therefore, when used as a transformer core, it can work at a very high operating point (such as an operating magnetic induction value of 1.5T). However, silicon steel also has the largest iron loss among commonly used soft magnetic materials. In order to prevent the iron core from heating due to excessive losses, its frequency of use is not high and it generally can only work below 20KHz. Therefore, the frequency of power circuits is mostly Around 50Hz. Our New-build transformer core Shunge Company not only provides first-hand silicon steel sheet raw materials, but also can customize finished transformer cores for customers. If you have any needs, please contact us.
    Read More
  • How does a transformer achieve voltage transformation? How does a transformer achieve voltage transformation?
    Jan 15, 2024
    Transformers achieve voltage transformation through electromagnetic induction. When an alternating current (AC) flows through the primary winding of the transformer, it generates a changing magnetic field. This changing magnetic field induces a voltage in the secondary winding based on the turns ratio between the primary and secondary windings. As a result, the voltage is stepped up or stepped down without altering the frequency, allowing efficient transmission of electrical energy across different voltage levels. A transformer operates based on the principle of electromagnetic induction. It consists of two insulated windings wound around a closed iron core. These windings, known as the primary winding or the first winding, and the secondary winding or the second winding, have different numbers of turns and are only magnetically coupled without electrical connection. When the primary winding is connected to an AC power source, an alternating current flows through it, creating an alternating magnetic flux in the iron core. This flux induces voltages, denoted as e1 and e2, respectively, in the primary and secondary windings at the same frequency. When a load is connected to the secondary winding, the voltage e2 causes the current to flow through the load, enabling the transfer of electrical energy. This accomplishes the voltage transformation. According to Equation, the magnitude of the induced voltage in the primary and secondary windings is proportional to their respective numbers of turns. Since the induced voltage is approximately equal to the actual voltage of the windings, by having different numbers of turns in the primary and secondary windings, the voltage conversion in a transformer can be achieved.
    Read More
  • What is a core in the transformer? What is a core in the transformer?
    Jan 22, 2024
      The core of the transformer is the magnetic circuit part of the transformer.  It is usually made of hot-rolled or cold-rolled silicon steel sheets with a high silicon content and coated with insulating paint on the surface. The iron core and the coils wound around it form a complete electromagnetic induction system. The amount of power transmitted by the power transformer depends on the material and cross-sectional area of the core.   The iron core is one of the most basic components of the transformer. It is the magnetic circuit part of the transformer. The primary and secondary windings of the transformer are on the iron core. In order to improve the permeability of the magnetic circuit and reduce the eddy current loss in the iron core, the iron core is usually Made of 0.35mm, surface insulated silicon steel sheet. The iron core is divided into two parts: an iron core post and an iron yoke. The iron core post is covered with windings, and the iron yoke connects the iron core to form a closed magnetic circuit. In order to prevent the metal components such as the transformer core, clamps, and pressure rings from inductive floating potential being too high and causing discharge during operation, these components need to be grounded at a single point. In order to facilitate testing and fault finding, large transformers generally have the core and clamps lead out to the ground through two bushings respectively.
    Read More

Need Help? leave a message

leave a message

We will contact you as soon as possible

Submit

home

products

whatsApp

contact

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on